Menu
 
Research menu
Jump to menu

Publications:  Dr Shane Wilkinson

Toro P, Suazo C, Acuña A et al.(2018). Cyrhetrenylaniline and new organometallic phenylimines derived from 4- and 5-nitrothiophene: Synthesis, characterization, X-Ray structures, electrochemistry and in vitro anti-T. brucei activity. Journal of Organometallic Chemistry
10.1016/j.jorganchem.2018.03.004
http://qmro.qmul.ac.uk/xmlui/handle/123456789/35623
Guerrero SA, Arias DG, Cabeza MS et al.(2017). Functional characterization of the methionine sulfoxide reductase repertoire in Trypanosoma brucei. Free Radic Biol Med vol. 112, 524-533.
10.1016/j.freeradbiomed.2017.08.023
http://qmro.qmul.ac.uk/xmlui/handle/123456789/25888
Meredith EL, Kumar A, Konno A et al.(2017). Distinct activation mechanisms trigger the trypanocidal activity of DNA damaging prodrugs. Molecular Microbiology vol. 106, (2) 207-222.
10.1111/mmi.13767
http://qmro.qmul.ac.uk/xmlui/handle/123456789/25315
Ranzani AT, Nowicki C, WILKINSON SR et al.(2017). Identification of Specific Inhibitors of Trypanosoma cruzi Malic Enzyme Isoforms by Target-Based HTS. SLAS Discovery vol. 22, (9) 1150-1161.
10.1177/2472555217706649
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22823
de Padua RAP, Kia AM, Filho AJC et al.(2017). Characterisation of the fumarate hydratase repertoire in Trypanosoma cruzi. International Journal of Biological Macromolecules vol. 102, 42-51.
10.1016/j.ijbiomac.2017.03.099
http://qmro.qmul.ac.uk/xmlui/handle/123456789/22341
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2016). Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. European Journal of Medicinal Chemistry vol. 123, 895-904.
10.1016/j.ejmech.2016.08.002
http://qmro.qmul.ac.uk/xmlui/handle/123456789/15702
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2016). Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. European Journal of Medicinal Chemistry vol. 117, 179-186.
10.1016/j.ejmech.2016.04.010
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11848
O'Shea IP, Shahed M, Aguilera-Venegas B et al.(2016). Evaluating 5-nitrothiazoles as trypanocidal agents. Antimicrobial Agents and Chemotherapy vol. 60, (2) 1137-1140.
10.1128/AAC.02006-15
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10016
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2015). 3-Nitrotriazole-based piperazides as potent antitrypanosomal agents. European Journal of Medicinal Chemistry vol. 103, Article C, 325-334.
10.1016/j.ejmech.2015.08.042
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11658
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2015). Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorganic & Medicinal Chemistry vol. 23, (19) 6467-6476.
10.1016/j.bmc.2015.08.014
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11657
Sullivan JA, Tong JL, Wong M et al.(2015). Unravelling the role of SNM1 in the DNA repair system of Trypanosoma brucei. Molecular Microbiology vol. 96, (4) 827-838.
10.1111/mmi.12973
Taylor MC, Lewis MD, Fortes-Francisco A et al.(2015). The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence. PLoS Neglected Tropical Diseases vol. 9, (4)
10.1371/journal.pntd.0003707
http://qmro.qmul.ac.uk/xmlui/handle/123456789/7339
Sullivan JA, Tong JL, Wong M et al.(2015). Unravelling the role of SNM1 in the DNA repair system of Trypanosoma brucei. Molecular Microbiology vol. 96, (4) 827-838.
10.1111/mmi.12973
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10015
Shameer S, Logan-Klumper F, Vinson F et al.(2015). TrypanoCyc: A community led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research vol. 43, D637-D644.
10.1093/nar/gku944
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11604
Papadopoulou MV, Bloomer WD, Lepesheva GI et al.(2015). Novel 3-nitrotriazole-based amides and carbinols as bifunctional anti-Chagasic agents. Journal of Medicinal Chemistry vol. 58, (3) 1307-1319.
10.1021/jm5015742
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11605
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2014). Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. European Journal of Medicinal Chemistry vol. 87, 79-88.
10.1016/j.ejmech.2014.09.045
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10880
Carvalho AS, Salomão K, Castro SL et al.(2014). Megazol and its bioisostere 4H-1,2,4-triazole: Comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the T. brucei nitroreductase enzyme (TbNTR). Memórias do Instituto Oswaldo Cruz vol. 109, (3) 315-323.
10.1590/0074-0276140497
Voak AA, Seifert K, Helsby NA et al.(2014). Evaluating aziridinyl nitrobenzamide compounds as leishmanicidal prodrugs. Antimicrobial Agents and Chemotherapy vol. 58, (1) 370-377.
10.1128/AAC.01459-13
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10013
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2013). Novel 3-nitro-1H-1,2,4-triazole-based compounds as potential anti-Chagasic drugs: In vivo studies. Future Medicinal Chemistry vol. 5, (15) 1763-1776.
10.4155/fmc.13.108
Roussaki M, Hall B, Lima SC et al.(2013). Synthesis and anti-parasitic activity of a novel quinolinylchalcones series. Bioorganic and Medicinal Chemistry Letters vol. 23, 6436-6441.
10.1016/j.bmcl.2013.09.047
Voak AA, Gobalakrishnapillai V, Seifert K et al.(2013). An essential type I nitroreductase from Leishmania major can be used to activate leishmanicidal prodrugs. Journal of Biological Chemistry vol. 288, (40) 28466-28476.
10.1074/jbc.M113.494781
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12388
Buchanan-Kilbey G, Djumpah J, Papadopoulou MV et al.(2013). Evaluating the developmental toxicity of trypanocidal nitroaromatic compounds on zebrafish. Acta Tropica vol. 128, (3) 701-705.
10.1016/j.actatropica.2013.07.022
Bot C, Hall BS, Alvarez G et al.(2013). Evaluating 5-nitrofurans as trypanocidal agents. Antimicrobial Agents and Chemotherapy vol. 57, 1638-1647.
10.1128/AAC.02046-12
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12578
Kelly JM, WILKINSON SR(2013). Mechanisms of resistance to antiparasitic drugs in Trypanosoma cruzi. Is there a correlation between genotype and resistance?. Revista. Espanola de Salud Publica. vol. 87, 17-23.
Hall BS, Meredith EL, WILKINSON SR(2012). Targeting the substrate preference of a type I nitroreductase to develop anti-trypanosomal quinone-based prodrugs. Antimicrobial Agents and Chemotherapy vol. 56, (11) 5821-5830.
10.1128/AAC.01227-12
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12577
Papadopoulou MV, Bloomer WD, Rosenzweig HS et al.(2012). Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. Journal of Medicinal Chemistry vol. 55, (11) 5554-5565.
10.1021/jm300508n
Caminos AP, Panozzo-Zenere EA, WILKINSON SR et al.(2012). Synthesis and antikinetoplastid activity of a series of N,N'-substituted diamines. Bioorganic and Medicinal Chemistry Letters vol. 22, (4) 1712-1715.
10.1016/j.bmcl.2011.12.101
Hall BS, Wilkinson SR(2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy vol. 56, (1) 115-123.
10.1128/AAC.05135-11
Mejia AM, Hall BS, Taylor MC et al.(2012). Benznidazole-Resistance in Trypanosoma cruzi Is a Readily Acquired Trait That Can Arise Independently in a Single Population. Journal of Infectious Diseases vol. 2, (206) 220-228.
10.1093/infdis/jis331
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12389
Yang Y, Voak A, WILKINSON SR et al.(2012). Design, synthesis, and evaluation of potential prodrugs of DFMO for reductive activation. Bioorganic and Medicinal Chemistry Letters vol. 22, (21) 6583-6586.
10.1016/j.bmcl.2012.09.005
Papadopoulou MV, Trunz BB, Bloomer WD et al.(2011). Novel 3-Nitro-1H-1,2,4-triazole-based Aliphatic and Aromatic Amines as anti-Chagasic Agents. Journal of Medicinal Chemistry vol. 54, (23) 8214-8223.
10.1021/jm201215n
Hu L, Wu X, Han J et al.(2011). Synthesis and structure-activity relationships of nitrobenzyl phosphoramide mustards as nitroreductase-activated prodrugs. Bioorg. Med. Chem. Lett vol. 21, 3986-3991.
10.1016/j.bmcl.2011.05.009
http://qmro.qmul.ac.uk/xmlui/handle/123456789/1179
Hall BS, Bot C, Wilkinson SR(2011). Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. Journal of Biological Chemistry vol. 286, (15) 13088-13095.
10.1074/jbc.M111.230847
http://qmro.qmul.ac.uk/xmlui/handle/123456789/982
Papadopoulou MV, Bloomer WD, Chatelain E et al. (2011). Novel nitrotriazole/imidazole-based amides and sulfonamides as potential anti-trypanosomal drugs, III. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. vol. 241,
Wilkinson SR, Bot C, Kelly JM et al.(2011). Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Current Topics in Medicinal Chemistry vol. 11, (16) 2072-2084.
10.2174/156802611796575894
Sarell CJ, Wilkinson SR, Viles JH(2010). Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease. Journal of Biological Chemistry vol. 285, (53) 41533-41540.
10.1074/jbc.M110.171355
Bot C, Hall BS, Bashir N et al.(2010). Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrobial Agents and Chemotherapy vol. 54, (10) 4246-4252.
10.1128/AAC.00800-10
Hall BS, Wu X, Hu L et al.(2010). Exploiting the drug-activating properties of a novel trypanosomal nitroreductase. Antimicrobial Agents and Chemotherapy vol. 54, (3) 1193-1199.
10.1128/AAC.01213-09
http://qmro.qmul.ac.uk/xmlui/handle/123456789/896
Patel S, Hussain S, Harris R et al.(2010). Structural insights into the catalytic mechanism of Trypanosoma cruzi GPXI (glutathione peroxidase-like enzyme I). Biochemical Journal vol. 425, 513-522.
10.1042/BJ20091167
http://qmro.qmul.ac.uk/xmlui/handle/123456789/841
Schnick C, Polley SD, Fivelman QL et al.(2009). Structure and non-essential function of glycerol kinase in Plasmodium falciparum blood stages. Molecular Microbiology vol. 71, (2) 533-545.
10.1111/j.1365-2958.2008.06544.x
Wilkinson SR, Kelly JM(2009). Trypanocidal drugs: mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine vol. 11,
10.1017/S1462399409001252
http://qmro.qmul.ac.uk/xmlui/handle/123456789/290
Irigoin F, Cibils L, Comini MA et al.(2008). Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radical Biology and Medicine vol. 45, (6) 733-742.
10.1016/j.freeradbiomed.2008.05.028
http://qmro.qmul.ac.uk/xmlui/handle/123456789/633
Wilkinson SR, Taylor MC, Horn D et al.(2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences of USA vol. 105, (13) 5022-5027.
10.1073/pnas.0711014105
http://qmro.qmul.ac.uk/xmlui/handle/123456789/913
Piacenza L, Peluffo G, Alvarez MN et al.(2008). Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochemical Journal vol. 410, 359-368.
10.1042/BJ20071138
Taylor MC, Kaur H, Blessington B et al.(2008). Validation of spermidine synthase as a drug target in African trypanosomes. Biochemical Journal vol. 409, (2) 563-569.
10.1042/BJ20071185
Logan FJ, Taylor MC, Wilkinson SR et al.(2007). The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase. Biochemical Journal vol. 407, (3) 419-426.
10.1042/BJ20070766
Piacenza L, Irigoin F, Alvarez MN et al.(2007). Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochemical Journal vol. 403, 323-334.
10.1042/BJ20061281
Prathalingham SR, Wilkinson SR, Horn D et al.(2007). Deletion of the Trypanosoma brucei superoxide dismutase gene sodb1 increases sensitivity to nifurtimox and benznidazole. Antimicrobial Agents and Chemotherapy vol. 51, (2) 755-758.
10.1128/AAC.01360-06
http://qmro.qmul.ac.uk/xmlui/handle/123456789/299
Wilkinson SR, Prathalingam SR, Taylor MC et al.(2006). Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radical Biology and Medicine vol. 40, (2) 198-209.
10.1016/j.freeradbiomed.2005.06.022
Wilkinson SR, Prathalingam SR, Taylor MC et al.(2005). Vitamin C biosynthesis in trypanosomes: A role for the glycosome. P NATL ACAD SCI USA vol. 102, (33) 11645-11650.
10.1073/pnas.0504251102
Obado SO, Taylor MC, Wilkinson SR et al.(2005). Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional "strand-switch" domain as a major feature. Genome Research vol. 15, (1) 36-43.
10.1101/gr.2895105
Bromley EV, Taylor MC, Wilkinson SR et al.(2004). The amino terminal domain of a novel WD repeat protein from Trypanosoma cruzi contains a non-canonical mitochondrial targeting signal (vol 34, pg 63, 2004). INT J PARASITOL vol. 34, (8) 989-989.
10.1016/j.ijpara.2003.09.013
Bromley EV, Taylor MC, Wilkinson SR et al.(2004). The amino terminal domain of a novel WD repeat protein from Trypanosoma cruzi contains a non-canonical mitochondrial targeting signal. International Journal of Parasitology vol. 34, (1) 63-71.
10.1016/j.ipara.2003.09.004
Wilkinson SR, Horn D, Prathalingam SR et al.(2003). RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. J BIOL CHEM vol. 278, (34) 31640-31646.
10.1074/jbc.M303035200
Wilkinson SR, Kelly JM(2003). The role of glutathione peroxidases in trypanosomatids. Biol Chem vol. 384, (4) 517-525.
10.1515/BC.2003.060
Wilkinson SR, Obado SO, Mauricio IL et al.(2002). Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proc Natl Acad Sci U S A vol. 99, (21) 13453-13458.
10.1073/pnas.202422899
Wilkinson SR, Taylor MC, Touitha S et al.(2002). TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. BIOCHEM J vol. 364, 787-794.
10.1042/BJ20020038
Wilkinson SR, Meyer DJ, Taylor MC et al.(2002). The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem vol. 277, (19) 17062-17071.
10.1074/jbc.M111126200
Wilkinson SR, Meyer DJ, Kelly JM(2000). Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. BIOCHEM J vol. 352, 755-761.
10.1042/0264-6021:3520755
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12072
Wilkinson SR, Temperton NJ, Mondragon A et al.(2000). Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J Biol Chem vol. 275, (11) 8220-8225.
10.1074/jbc.275.11.8220
Mondragon A, Wilkinson SR, Taylor MC et al.(1999). Optimization of conditions for growth of wild-type and genetically transformed Trypanosoma cruzi on agarose plates. PARASITOLOGY vol. 118, 461-467.
10.1017/S0031182099004230
Temperton NJ, Wilkinson SR, Meyer DJ et al.(1998). Overexpression of superoxide dismutase in Trypanosoma cruzi results in increased sensitivity to the trypanocidal agents gentian violet and benznidazole. MOLECULAR AND BIOCHEMICAL PARASITOLOGY vol. 96, (1-2) 167-176.
10.1016/S0166-6851(98)00127-3
Tovar J, Wilkinson S, Mottram JC et al.(1998). Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. MOLECULAR MICROBIOLOGY vol. 29, (2) 653-660.
10.1046/j.1365-2958.1998.00968.x
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12071
Temperton NJ, Wilkinson SR, Kelly JM(1996). Cloning of an Fe-superoxide dismutase gene homologue from Trypanosoma cruzi. MOLECULAR AND BIOCHEMICAL PARASITOLOGY vol. 76, (1-2) 339-343.
10.1016/0166-6851(95)02553-7
Return to top